- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Acciarri, Cristina (1)
-
Guralnick, Robert (1)
-
Shumyatsky, Pavel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Let G G be a finite group admitting a coprime automorphism α \alpha of order e e . Denote by I G ( α ) I_G(\alpha ) the set of commutators g − 1 g α g^{-1}g^\alpha , where g ∈ G g\in G , and by [ G , α ] [G,\alpha ] the subgroup generated by I G ( α ) I_G(\alpha ) . We study the impact of I G ( α ) I_G(\alpha ) on the structure of [ G , α ] [G,\alpha ] . Suppose that each subgroup generated by a subset of I G ( α ) I_G(\alpha ) can be generated by at most r r elements. We show that the rank of [ G , α ] [G,\alpha ] is ( e , r ) (e,r) -bounded. Along the way, we establish several results of independent interest. In particular, we prove that if every element of I G ( α ) I_G(\alpha ) has odd order, then [ G , α ] [G,\alpha ] has odd order too. Further, if every pair of elements from I G ( α ) I_G(\alpha ) generates a soluble, or nilpotent, subgroup, then [ G , α ] [G,\alpha ] is soluble, or respectively nilpotent.more » « less
An official website of the United States government
